Solving Cardiac Electrophysiology Models Based on the Markov-Chain
Formulations with Tensor Cores

Jodo Victor C de Oliveira', Johnny M Gomes', Marcelo Lobosco!, Rodrigo W dos Santos!

! Federal University of Juiz de Fora, Juiz de Fora, Brazil

Abstract

This work presents a high-performance GPU-accelerated
method for solving cardiac electrophysiology models. Us-
ing the uniformization technique to enhance the classical
matrix exponential for CTMCs, it improves stability and
efficiency. Implemented with NVIDIA Tensor Cores via
WMMA, it achieves up to 148x CPU speedup and 1.5%
over standard CUDA. Validation with 1000—100000 Bon-
darenko model instances confirms scalability and accu-
racy for electrophysiological simulations.

1. Introduction

The modeling of complex biological systems has sig-
nificantly advanced through the application of mathemat-
ical and computational techniques. For instance, Markov
chains (MCs) and their extensions play a central role in
computational biology, where they enable the simulation
of stochastic and state-dependent processes. A prominent
example is the use of Markov models to represent ion
channel gating dynamics in action potential simulations.
One such model, proposed by Bondarenko in 2004 [1], ex-
amines the ionic mechanisms underlying action potential
behavior in mouse ventricular myocytes. This model uti-
lizes detailed Markov formulations to describe key ionic
currents, including the fast sodium current (Iy,), L-type
calcium current (/c,), and rapid delayed rectifier potas-
sium current (Ix,), providing a framework for studying the
effects of genetic mutations and pharmacological interven-
tions on cardiac electrophysiology. Despite their mecha-
nistic accuracy, MC-based models are considerably more
computationally intensive than classical Hodgkin—Huxley-
type models, which limits their practical use in large-scale
or real-time simulations.

With this in mind, the present work focuses on the
efficient numerical solution of electrophysiological mod-
els formulated using the Markov chain formalism. To
overcome the computational challenges associated with
solving large systems of Markovian equations, we ex-
tend the matrix exponential method and integrate a uni-

Computing in Cardiology 2025; Vol 52

formization technique [2, 3], improving both numerical
stability and computational performance. To further en-
hance efficiency, we developed two GPU-accelerated im-
plementations: one leveraging conventional CUDA cores,
and another exploiting the advanced capabilities of Tensor
Cores available in modern NVIDIA GPUs, which are op-
timized for high-throughput, mixed-precision matrix op-
erations. Our results demonstrate substantial speedups
enabled by hardware-aware optimization and paralleliza-
tion strategies, underscoring the potential of these tech-
niques for scalable and real-time simulation of Markov-
based electrophysiological models.

2. Methods

2.1. Matrix Exponential and Uniformiza-
tion Method

The uniformization method, also known as the random-
ization method, is a numerical technique developed to effi-
ciently and accurately compute the solution of continuous-
time Markov chains (CTMCs), particularly for transient
analysis [3]. This method reformulates the computation
of the matrix exponential, which arises in the analytical
solution of linear systems of the form [2]

dY (t)
dt
with known analytical solution [2]

— AY (1), 1)

Y (t) = exp(t x A) x Y (0), 2)

where A is the infinitesimal generator matrix of the CTMC.
Direct evaluation of the matrix exponential via its Taylor
series, following the Eq. (3), can suffer from numerical
instability and poor convergence due to the structure of
matrix A, as it typically has negative diagonal entries and
non-negative off-diagonal elements, with potentially large
magnitudes [3].

oo

exp(t X A) = Z

=0

(t x A
3! ’

3)

Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.176

To bypass these issues, the uniformization method in-
troduces a normalization parameter ¢ > max;|A;;|, and
defines a new matrix:

A=Ay @)
q

where I is a diagonal matrix of the same dimensions as A
and A™. This transformation gives:

P(t) = eap(—g x) x 3 M}?(O).)
i=0 ’

The matrix A* now behaves like a stochastic matrix, i.e.,
non-negative entries, and row sums close to one, which
ensures faster and more stable convergence of the series.
In practice, the series is truncated at an index N (t) such
that the residual error is bounded by the tolerance A [2]
described by Eq. (6). This approach guarantees the de-
sired accuracy while enabling efficient reuse of intermedi-
ate terms during the computation.

2

@ (g x b

A<1-—exp(—qgxt)x S
- 1.

(6)

N
Il
=)

2.2. Tensor Cores

Tensor Cores are specialized processing units found in
modern NVIDIA GPUs, specifically designed to acceler-
ate mixed-precision matrix operations, with a focus on
matrix-matrix multiplications. Unlike conventional CUDA
cores, which handle general-purpose computations, Ten-
sor Cores are optimized for high-throughput linear alge-
bra operations. They exploit the inherent structure of ma-
trix computations to maximize both performance and en-
ergy efficiency. Central to their functionality is the ability
to rapidly execute fused multiply-accumulate (FMA) op-
erations on small matrix blocks, typically sized at 4 x 4,
8 x 8, or 16 x 16. These operations are performed in
mixed precision, commonly utilizing FP16 or BF16 inputs
with FP32 accumulation. This approach allows for signif-
icant speedups while ensuring adequate numerical accu-
racy across a variety of scientific and engineering applica-
tions. When applied to matrix-matrix multiplication, a fun-
damental operation in numerous computational problems,
including those related to Markov Chains and machine
learning, Tensor Cores provide considerable performance
enhancements compared to traditional GPU implementa-
tions. Conventional methods that rely on general-purpose
CUDA cores often encounter memory bandwidth limita-
tions and instruction overhead. In contrast, leveraging Ten-
sor Cores through low-level interfaces such as WMMA

in CUDA facilitates specialized hardware acceleration, re-
ducing latency and enhancing arithmetic intensity. This ca-
pability proves especially beneficial when computing ma-
trix exponentials via the Taylor series expansion of the
transition matrix. Each term in the expansion requires cal-
culating successive powers of the system matrix, and the
computational demands increase rapidly with the desired
accuracy. Tensor Cores can significantly mitigate this ex-
pense by speeding up the necessary matrix multiplications,
thereby allowing for the efficient and scalable evaluation
of higher-order expansions. As a result, integrating Tensor
Core-based operations into the matrix exponential method
enhances both computational efficiency and numerical ro-
bustness, making it particularly well-suited for large-scale
or real-time simulations.

2.3. Experiments

To validate the proposed approach, a series of exper-
iments was conducted using the Bondarenko model [1].
The four Markovian chains (MCs) associated with this
model were solved using the matrix exponential in con-
junction with the uniformization method, and the result-
ing state probabilities were subsequently passed to the or-
dinary differential equation (ODE) solver. The first ex-
periment consisted of a serial implementation, in which
both the matrix exponential and the uniformization process
were computed exclusively on the CPU, along with the
numerical integration of the ODEs. In the second imple-
mentation both the matrix exponential and the uniformiza-
tion process were computed exclusively on the CPU, along
with the numerical integration of the ODEs, but using the
OpenMP API. In the third implementation, the matrix ex-
ponential, uniformization and the ODE were solved in the
GPU using conventional CUDA. The fourth version em-
ployed a Tensor Core-based strategy to accelerate the ma-
trix exponential and uniformization on the GPU, with the
ODEs still being solved with conventional CUDA. The
CPU code was developed in the C programming language,
while the GPU implementation was written in CUDA.
Specifically, the Tensor Core-based experiment utilized the
WMMA (Warp Matrix Multiply-Accumulate) API to ex-
ploit the capabilities of Tensor Cores.

In all cases, the ODEs were integrated using the
Rush-Larsen method [4], with time steps of 0.01 and 0.05
ms. Preliminary tests were performed to determine the ap-
propriate number of terms required in the truncated series
expansion described by Eq. 5, and it was verified that using
nine terms provided sufficient accuracy across all config-
urations. Since the cellular model was not coupled to a
spatially explicit tissue-level representation, we simulated
a large-scale, tissue-like scenario by solving 1000, 10000,
and 100000 independent instances of the model at each
time step, and analyzing the increasing in time when the

Page 2

number of instances is increased. To introduce hetero-
geneity among these instances, small perturbations were
applied to the initial conditions described in the original
study [1]. This procedure enables a more realistic emula-
tion of the variability expected in a tissue-coupled context.
Overall, this strategy serves as a proxy to approximate the
computational workload typically observed in tissue-level
simulations, where cellular dynamics must be solved con-
currently across multiple spatial locations in a discretized
domain. All required model parameters, equations, and
baseline initial conditions are provided in the original pub-
lication [1].

The experiments were conducted on a workstation fea-
turing an AMD Ryzen 9 7950X3D processor with 16 phys-
ical cores. Each core is equipped with 32 KB of L1
data cache, 32 KB of L1 instruction cache, and 1 MB of
L2 cache, while the processor shares a total of 128 MB
of 3D V-Cache (L3). The system is equipped with 64
GB of DDR5 RAM and a Gigabyte GeForce RTX 4080
Gaming OC GPU, which includes 9728 CUDA cores and
304 Tensor Cores. The GPU is equipped with 16 GB of
GDDR6X memory on a 256-bit memory interface, deliv-
ering high memory bandwidth optimized for intensive par-
allel computations. For the CUDA implementation, the
NVCC compiler (version 12.8) was used with the opti-
mization flag —03. For both the serial version and the
CPU-executed code, the gcc compiler (version 13.2) was
employed, also with the —~O3 optimization flag enabled.

3. Results

To assess and compare the performance of the par-
allel implementations relative to the serial version, the
speedup metric was employed. According to this metric,
the speedup is calculated as:

j;l ower

S = ,
Tbase

@)

where Tgower denotes the execution time of the baseline
(i.e., slower) experiment, and Ti,s represents the execu-
tion time of the experiment under analysis.

The results are summarized in Tables 1 and 2, which
presents the performance comparison across different im-
plementations, the two time steps, and instance counts. All
the simulations were performed from ¢t = 0Os to t = 20s,
following our previous work [2]. The first column identi-
fies the computational configuration: Serial (fully sequen-
tial execution on the CPU), OpenMP (multi-threaded CPU
execution), CUDA (GPU execution using standard CUDA
cores), and Tensor Cores (GPU execution using NVIDIA
Tensor Cores). For each configuration, three performance
metrics are reported: the average execution time in min-
utes (Mean), the corresponding standard deviation (Std),

and the Speedup for the calculated performance gain rel-
ative to the slowest configuration, following Eq. (7). The
boldface values highlight the best execution time, i.e., the
highest speedup, within each row. The rows indicate the
different time step values used in the simulations.

4. Discussion

The results from our experiments underscore the sub-
stantial impact of leveraging Tensor Cores over conven-
tional CUDA in GPU-accelerated cardiac simulations.
Across all tested configurations and time steps, the Tensor
Core implementation consistently achieved a speedup of
approximately 1.4 x to 1.5x over the standard CUDA ver-
sion, highlighting the meaningful performance gains en-
abled by specialized hardware. These advantages were es-
pecially evident in large-scale scenarios: for 100000 in-
dependent instances, Tensor Cores achieved speedups ex-
ceeding 144 x compared to CPU execution, while conven-
tional CUDA plateaued around 101 x. This confirms that
performance can be significantly enhanced even beyond
general-purpose GPU optimization through fine-grained
access to low-level architectural features.

Both GPU implementations substantially outperformed
CPU and OpenMP baselines. Yet, the consistent addi-
tional gain from Tensor Cores across all time steps, even at
high temporal resolutions, demonstrates the robustness and
scalability of the approach. For instance, at 0.050 ms and
100000 instances, execution time dropped to 0.336 min-
utes using Tensor Cores, compared to 0.491 minutes with
CUDA. These results validate our method’s efficiency in
handling computationally intensive, parallelizable work-
loads typical of Markov-based electrophysiological mod-
els. However, for simulations involving only 1000 in-
dependent instances, the performance gains from parallel
strategies (both OpenMP, conventional CUDA, and Tensor
Cores) were notably reduced, suggesting that the overhead
of GPU initialization and kernel execution may outweigh
the benefits in small-scale problems.

Finally, using CUDA WMMA APIs to access Tensor
Cores showcases the benefits of low-level hardware-aware
programming. While conventional CUDA already deliv-
ers strong acceleration, Tensor Cores provide a clear per-
formance edge, particularly for operations dominated by
dense matrix multiplications, making them an ideal fit
for methods like matrix uniformization in cardiac mod-
eling. Although the implementation using tensor cores
can be considered more difficult when comparing with the
OpenMP and conventional CUDA approaches, the result-
ing performance gains justify this additional complexity.
Importantly, we also verified whether the use of mixed-
precision matrix operations introduced accuracy issues,
given the known sensitivity of ionic models to numerical
errors. The root mean squared error (RMSE) [5] between

Page 3

Table 1. Performance comparison for different implementations and independent instances for ~ = 0.01. Each value is

the average over 20 runs.

Method 1000 instances 10000 instances 100000 instances

Mean Std Speedup | Mean Std Speedup Mean Std Speedup
Serial 0.500 0.005 1.00 | 5.021 0.014 1.00 | 50.200 0.050 1.00
OpenMP 0.080 0.003 6.25 | 0.314 0.003 15.99 3.140 0.020 15.99
CUDA 0.050 0.002 10.00 | 0.050 0.001 100.42 0.520 96.54
Tensor Cores | 0.035 0.001 14.29 | 0.035 0.001 144.85 0.347 0.009 144.66 |

Table 2. Performance comparison for different implementations and independent instances for & = 0.05. Each value is

the average over 20 runs.

Method 1000 instances 10000 instances 100000 instances
Mean Std Speedup | Mean Std Speedup Mean Std Speedup
Serial 0.495 0.004 1.00 | 5.001 0.008 1.00 | 50.010 0.045 1.00
OpenMP 0.078 0.002 6.35 | 0.313 0.003 15.97 3132 0.018 15.97
CUDA 0.049 0.001 10.10 | 0.050 0.001 100.02 0.491 0.009 101.85
Tensor Cores | 0.034 0.001 14.56 | 0.034 0.001 147.09 0.336 0.008 148.24

GPU (mixed-precision) and CPU (double-precision) solu-
tions was found to be at most 10~3, which we considered
acceptable in light of the speedup provided by the GPU
implementation.

5. Conclusions, Limitations and Future
Works

In this study, we proposed and evaluated a high-
performance numerical framework for simulating cardiac
electrophysiology models based on Markov chains. By in-
tegrating the matrix uniformization method with hardware-
accelerated computation via NVIDIA Tensor Cores, we
aimed to reduce computational cost while maintaining nu-
merical accuracy and stability. The results demonstrate
that the Tensor Core implementation consistently outper-
formed both the CPU and conventional CUDA approaches,
achieving up to 148.24 x speedup over the CPU and up to
1.455x over standard CUDA, across multiple time steps
and problem sizes. These findings support the effective-
ness of combining matrix uniformization with specialized
GPU hardware for handling large ensembles of indepen-
dent Markov-based cellular simulations. In future work,
we plan to extend our approach to additional Markov-
based cellular models and apply the proposed methods and
implementations to whole-heart electrophysiology simu-
lations. Moreover, given that the present study focused
on cell-level dynamics, future developments will also con-
sider tissue-level simulations, which naturally align with
the workload design and would allow assessing the scala-
bility of the proposed framework in more physiologically
realistic scenarios.

Acknowledgments

The authors would like to express their thanks to
Wellcome Trust fellowship (214290/Z/18/Z), the EPSRC

project CompBioMedX (EP/X019446/1), CompBioMed2
grant agreements No.675451 and No.823712, Minas
Gerais State Research Support Foundation (FAPEMIG)-
PCE-00048-25; APQ-02752-24, APQ-02445-24, APQ-
02513-22, FINEP (SOS Equipamentos 2021 AV02
0062/22), “Coordenagdo de Aperfeicoamento de Pessoal
de Nivel Superior” (CAPES) 88881.708850/2022-01 and
88881.691780/2022-01, “Empresa Brasileira de Servicos
Hospitalares” (Ebserh), SINAPAD Santos-Dumond, and
Federal University of Juiz de Fora (UFJF) for funding this
work.

References

[1] Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, Rasmusson
RL. Computer model of action potential of mouse ventric-
ular myocytes. American journal of physiology heart and
circulatory physiology 2004;287(3):H1378-H1403.

[2] Gomes JM, Alvarenga A, Campos RS, Rocha BM, da Silva
APC, Santos RWd. Uniformization method for solving car-
diac electrophysiology models based on the markov-chain
formulation. IEEE transactions on biomedical engineering
2015;62(2):600-608.

[3] Jensen A. Markoff chains as an aid in the study of
markoff processes. Scandinavian actuarial journal 1953;
1953(sup1):87-91.

[4] Rush S, Larsen H. A practical algorithm for solving dynamic
membrane equations. IEEE Transactions on Biomedical En-
gineering July 1978;BME-25(4):389-392. ISSN 0018-9294.

[5] Ramachandran K, Tsokos C. Mathematical Statistics with
Applications. Elsevier science, 2009. ISBN 9780080951706.

Address for correspondence:

Jodo Victor Costa de Oliveira

Patamar da Faculdade de Engenharia da UFJF, Prédio Azul, Juiz
de Fora - MG, 36036-330

oliveira.joao @estudante.ufjf.br

Page 4

